Testing Generalized Linear and Semiparametric Models Against Smooth Alternatives
نویسنده
چکیده
We propose goodness of t tests for testing generalized linear models and semiparametric regression models against smooth alternatives The focus is on models having both continuous and factorial covariates As smooth extension of a parametric or semiparametric model we use generalized varying coe cient models as proposed by Hastie Tibshirani A likelihood ratio statistic is used for testing and asymptotic normality of the test statistic is proven Due to a slow asymptotic convergence rate a bootstrap approach is pursued Asymptotic expansions allow to write the estimates as linear smoothers which in turn guarantees simple and fast bootstrapping The test is shown to have p n power but in contrast to parametric tests it is powerful against smooth alternatives in general
منابع مشابه
Generalized Linear Models in Biomedical Statistical Applications+
SUMMARY In biological assays, clinical trials, life-testing problems, reliability and survival analysis, and a variety of applied fields ranging from agrometry to biodivrersity to zodiacal sciences, generalized linear models covering usual linear, transformed linear, log-linear and nonlinear regression models, multi-nomial and logistic regression models, as well as some semiparametric ones, are...
متن کاملNonparametric estimation and testing of fixed effects panel data models.
In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test betw...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملEstimated estimating equations: Semiparametric inference for clustered/longitudinal data
We introduce a flexible marginal modelling approach for statistical inference for clustered/longitudinal data under minimal assumptions. This estimated estimating equations (EEE) approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed-effects linear predictor with unknown smooth link, and variance...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007